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Abstract—An experimental investigation was made of the temperature distribution in a heated horizontal
layer of high Prandt! number (6 and 18) silicone fluids confined between rigid, parallel, conducting plates.
The experiments covered a range of Rayleigh numbers from 7-39 x 10° to 3-21 x 10%. The time mean tem-
perature close to the upper and lower boundaries could not be represented by a power law dependence
on distance from the boundary. The temperature fluctuations were found to have a characteristic period, as
predicted by Chang and Howard. Heat-transfer measurements were in agreement with previous measure-
ments. The distribution of the root mean square temperature fluctuations did not verify any of the proposed
theories. The nature of the heat transport processes in the liquid was also studied and the results were com-
pared with other experimental measurements made by Townsend, Croft and Deardorff, and Willis.

NOMENCLATURE k, thermal conductivity of the fluid

a, wave amplitude (see I;l]) ft]; . [Btu/h ft? °F/ft] ;

C,  specific heat of experimental fluid (se¢ [,  distance between upper and lower
definition of Rayleigh number) surface of the fluid layer [ft];

[Btu/lb m deg F] ; constant of propor- . exponent in equation (1) [dimension-
tionality in equation (1) [deg F—ft"]; less] ;
constant of proportionality inequation Ny, Nusselt number (hL/k) [dimension-
(9) [dimensionless] ; less] ;

e,  probe thermocouple em.f. correspond-  Pr,  Prandtl number (v/a) [dimensionless] ;
ing to the temperature difference be- R, ratio of conductive to total heat trans-
tween various stations (z) in the fluid port [dimensionless] ;
and the reference temperature (Ty) Ra, Rayleigh number (g8pCI*AT/vk) [di-
[mV]; mensionless] ;

¢,  time mean probe thermocouple emf.  Rg, conduction layer or wall Rayleigh
[mV]; number [see equation (2)], [dimen-

e, probe thermocouple em.f. fluctuations sionless] ;

(=e— & [mV]; T, temperature at various stations (z) in

g, rms. value of the probe thermo- the fluid [°F];
couple em.f. fluctuations [mV] ; T,  time mean fluid temperature [°F];

g  acceleration of gravity [417 x 10° 7' fluid temperature fluctuations (= T —
ft/h?); T) [deg F];

h,  coefficient of heat transfer [Btu/h ft? T, rm.s. fluctuations of fluid temperature
°F]; [deg F];

t Present address: Great Lakes Carbon Corp, Niagara ~ 1m»  temperature of the lower (hot) surface

Falls, New York.

1491

of the fluid layer [°F];
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T,  temperature of the upper (cold) surface
of the fluid layer [°F];

T,, mean temperature of the fluid layer
[Ty + T)/2] [°F1;
T*,  characteristic time of temperature fluc-

tuations (10%xt*/I?) [dimensionless] ;
t*,  characteristic time of temperature fluc-
tuations [see equation (2)] [h];

W,  r.m.s. value of the vertical (z direction)
component (w') of the velocity fluctua-
tions [ft/h];

z, coordinate in vertical direction [ft];

z,,  value of z at which it is assumed that
half the heat transport is by conduction
(L/2 Nu) [18], [t];

Ae, em.f. corresponding to AT [mV];

AT, temperature difference between upper
and lower surfaces of the fluid (T —
T) [deg F];

a, thermal diffusivity of the fluid [ft*/h];

B, coefficient of volume expansion of the

fluid [deg F~!];
v, kinematic viscosity of the fluid [ft?/h] ;
g, vertical coordinate (1-89 z/z,) [16],
[dimensionless] ;
vertical coordinate (z/2./ar*) [17],
[dimensionless] ;
P density of fluid {lbm/ft3].

INTRODUCTION

WHEN heat is first applied at the lower surface of
a layer of fluid enclosed at the top and the
bottom by rigid, horizontal, conducting bound-
aries, it is transferred to the upper plate by
conduction. With increasing heat input, a
point is reached where motion of the fluid
commences. The initiation of the motion has
been shown to depend on the critical value
(~170 x 103) of a non-dimensional parameter,
the Rayleigh number (Ra), which is defined in
the Nomenclature.

The motion at Rayleigh numbers slightly
greater than critical has a regular celiular or
roll pattern, which is often associated with
the name of Benard. As the Rayleigh number
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of the system is increased the regular flow
pattern breaks up and eventually (at a Rayleigh
numbert of about 3 x 10%) the flow becomes
completely disordered [26, 27]. This disordered
fluid motion provides a very suitable means
for the study of turbulence. The turbulent
fluctuations in wind tunnels and other channels
are subject to domination by the effects of the
mean flow but the flow in a heated fluid layer
is not influenced by effects of this type.

This paper describes an experiment in which
the temperatures were measured in a heated
fluid layer at high Rayleigh numbers and com-
pared with theoretical predictions.

Theories of free convection at high Rayleigh
numbers have been proposed by Malkus [19-
21], Chang 1], Kraichnan {18}, Howard [16],
[17] and Herring [15]. The theories of Howard
[16] and Herring [15] are in a certain sense
closely related to Malkus’ work. For this
reason particular attention will be paid in this
paper to the studies of Malkus, Kraichnan,
Howard [17] and Chang [1].

Malkus and Kraichnan have investigated
the temperatures in a region of the fluid where
turbulent heat and momentum transfer effects
are somewhat larger than viscous effects. For
high Rayleigh numbers (Ra 2 1-0 x 10°) the
fluid mean temperature was found to depend
on a relation of the form

T(z) = Cz™". n

The value of the exponent » in equation (1)
is shown in Table 1 (note that Kraichnan’s

Table 1. Values of exponent n in equation (1)

2/2q

Kraichnan {18] Malkus [20,21]

t 1to32,/Pr 1to Nu
32(/PrtoNu —_

b

t The exact value appears to depend on the Prandtl
number of the fluid {24, 30].
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results in this table apply to a fluid with a
Prandtl number greater than 0-1).

Chang [1] and, independently, Howard [17]
have proposed a thermal layer model for free
convection at high Rayleigh numbers. Accord-
ing to this theory, on the average the temperature
fluctuations in the fluid should have a charac-
teristic time (t*) given by

2
* = 5_(5‘2)*. Q)

nx\ Ra

In equation (2) the conduction layer Rayleigh
number (Ra;) is unknown and no means,
other than experiment, were suggested for its
evaluation. Howard also obtained an expression
for the mean temperature distribution and

deduced that
Ra \}

Measurements of the temperature in a fluid
layer at high Rayleigh numbers have been made
by Thomas and Townsend [28], Deardorff and
Willis [5, 6], Elder [11], Rossby [24] and
Somerscales and Dropkin [27]. The results of
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these experiments do not seem to provide a
definite support for any of the theories.

A number of investigations [2, 3, 28, 29] have
been made of the temperature distribution in
air over a single, heated horizontal plate.
Comparison of these experiments with the
theory is not entirely satisfactory because of
the lack of an upper bounding surface. However,
the measurements of Townsend [29] are of
particular interest because of the care with
which the experiment was conducted and the
nature and extent of the measurements. Towns-
end was able to show that equation (1) with
n = 1 represented the time mean temperature
data within experimental accuracy. For the
root mean square temperature fluctuations
n = 0-6 was suitable. The coefficient of pro-
portionality in both cases was a function of the
Nusselt, Rayleigh and Prandt! numbers.

The investigations reported here were in-
tended to make temperature measurements over
a very wide range of Rayleigh numbers using
high Prandt]l number liquids. In particular it
was proposed

(1) To investigate the validity of equation (1)

Table 2. Root mean square temperature fluctuations

T zZ\™"
AT ¢ Z,)
Reference C Ra Notes
Theoretical investigations
Kraichnan [18] 017 1
0183 /Pr 4
Howard [16) 018 —
Herring [15] 018 1
Howard [17] 009 — T /AT ) = C
Experimental investigations
Townsend [29] 0-09 06 Data of reference 16
Rossby [24] 0-078 0-67 1-16 x 108 C=T/AT,, =1
0052 072 315 x 108 where z/z, = 1
) 0-047 0-48 10 x 107 when z/L = 4 Nu
Deardorff and Willis [6] 011 — 63 x 10° Estimated from
0-10 25 x 10¢ } Figs. 6,7and 8 in [6].
0-09 10 x 107
Somerscales and Gazda 0-099 0-6 739 x 10* } Average value of C,
-32 x 10® hot and cold

boundaries
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and the nature of the exponent (n) for
both time mean and root mean square
temperature fluctuations.

(ii) To investigate the theories of Chang and
Howard [equations (2) and (3)].

(iii) To study the nature of the heat transport
processes in the liquid. This requires the
determination of the time mean tempera-
ture gradient at various stations in the
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Particular emphasis was to be placed on the
accuracy of the measurements of both heat
transfer and fluid temperatures.

APPARATUS AND INSTRUMENTATION
The apparatus used in these experiments
consisted of a rectangular container with copper
plates at the top and bottom and insulating

g
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FIG. 1. Schematic diagram of test chamber.
A—Micrometer screw B—Micrometer slide assembly C—Plexiglas side wall D—Thermo-
couple junction (0-0005 in. dia. wirc) E—Hot plate F—Electrical heater G—Plexiglas
side wall H—Quartz spacers I—Cold plate.

fluid which should be of general interest
by itself. Furthermore, as pointed out by
Deardorff and Willis [S], this procedure
has the advantage that it eliminates the
dependence of the data on a particular
reference temperature. It is therefore pos-
sible to compare measurements made in a
confined fluid layer, such as those reported
here, with the data obtained from air
heated in an open box [2, 29].

side-walls (Fig. 1). The upper plate was sup-
ported at its four corners on quartz spacers.t
The spacers were ground to length within
0-001 in. There was #5 in. clearance between
the upper plate and the side walls. This allowed
the spacers to be changed without removing
the side walls. The surfaces of the plates in

t The diameters of these spacers were § in. (2 in. long),
75 in. (1 in. long), 4 in. @ in. long).
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contact with the experimental fluid were
machined smooth and carefully polished to a
mirror finish. The lower plate was made of
73 in. by 93 in. by § in. thick copper and a } in.
thick copper back-up plate was attached by
screws. Thus the heater plate was about 3 in.
thick and sandwiched between its two sections
was an electrical heating element.

The heater was made by cutting rectangular
strips from a large piece of 32 B & S gage
‘““Nichrome V” sheet, in such a manner that a
continuous path was provided for the current
(see Fig. 2 of [8]). The heating element was

electrically insulated from the copper plates.

by two 0010 in. thick sheets of “Micanite™.
To minimize the effects of electrical noise in
the temperature measuring system, the heater
was wrapped in grounded shielding and DC
power was employed. A precision, regulated
power supply was used and this was capable
of maintaining a constant output within 0-1
per cent of the setting. The electrical input
to the heater was measured by a precision
voltmeter (accuracy 1 per cent) and ammeter
(accuracy 4 per cent).

The upper surface of the test chamber was
cooled by water circulating in channels cut
on the top surface of the upper plate. To avoid
a non-uniform temperature on the upper plate,
the channels were arranged in a spiral so that
adjacent channels carry water entering and
leaving the system. The rate of heat transfer
through the fluid layer can be determined from
measurements of the rate of flow and tempera-
ture rise of the coolant. The flow rate was
measured by a variable area flow meter (ac-
curacy 2 per cent). The temperature of the
entering coolant was maintained to within
0-2°F by a constant temperaturc circulator.
The hoses connecting the circulator and the
test chamber were carefully insulated. The
temperature rise of the coolant was measured
by calibrated thermocouples (accuracy 0-1°F)
located in a heavy insulating block.

The test chamber was mounted on an insulat-
ing support with three leveling screws, whicht
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were placed on rubber vibration isolators. The
apparatus was surrounded by a 6 in. thick
layer of “Styrofoam” (expanded polystyrene).

The temperatures of the upper and lower
surfaces were measured by calibrated Chromel-
Alumel thermocouples (accuracy 0-1°F), with
measuring junctions embedded 5 in. below the
liquid—metal interface. These junctions were
placed at points distributed over the surfaces
so as to indicate the uniformity of the plate
temperatures. The reference junction was main-
tained at 32°F in an ice bath. The e.m.f. output
of the thermocouples was read by a Leeds and
Northrup K3 potentiometer (accuracy 0-00025
mV).

To measure the liquid temperature in the
chamber, a calibrated thermocouple probe
(accuracy 0-1°F) was inserted through two 0-035
in. diameter holes in the upper plate. The probe
was made from 00005 in. dia Chromel-
Alumel wire. Careful examination of the electric-
ally welded junction [13] showed that it was
of the same diameter as the wire. The probe was
moved vertically by a driving screw with fine
pitch and having the minimum of backlash.
This screw was attached to the upper plate and
carefully aligned in the vertical plane. The
location of the probe was determined by a
vernier which could be read to 0-001 in. The
e.nf output of the probe thermocouple was
amplified in a low noise (less than 1 n.v.) ampli-
fier (Princeton Applied Research Corporation
HR-8 lock-in amplifiert). This amplifier was
used in the determination of the time mean
temperature (see following section). The ampli-
fier output was recorded on a Sanborn Twin-
Viso strip chart recorder to provide a visual
record of the temperature fluctuations. The
amplifier output was also magnetically recorded
using a Lockheed model 411 instrumentation
tape recorder. The magnetic recording was

+ The amplifier requires the signal to be chopped. A
chopper {Stevens~Arnold Inc., type CH1238) with residual
noise less than 1 uV was used. For a discussion of the theory
of the lock-in amplifier see [22].
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used to provide the input to the root mean
square computer circuit (see following section).
The thermocouple circuit is shown in Fig 2.
To minimize electromagnetic interference, the
thermocouple circuits were completely enclosed
in grounded shielding. In this way electrical
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temperature were less than 0-1°F. The time
constant of the bath was sufficiently long (ap-
proximately 5 days) to ensure that the oil
temperature did not vary by more than 0-1°F
in the time (usually about 1 hr} required to
complete the calibration measurements at a

*‘\/"“"‘l
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FiG. 2 Thermocouple circuit.
A—Power amplifier B—Recording galvanometer (Sanborn Twin-Viso) C—Lock-in amplifier (Prince-
ton Applied Research HR8) D—Magnetic tape recorder (Lockheed 411) E—Chopper F—Reference
resistor (required in lock-in amplification technique) G—Probe junction H—Probe thermocouple
reference junction in lower plate I—Plate thermocouple selecter switches J—Plate thermocouple point
reference junction K—Potentiometer {Loeds and Northrup K3) L—Electronic null detector.

noise was kept to a level below 1 pV. All un-
avoidable connections between different metals
in the thermocouple circuit were carefully
protected from temperature variations by being
enclosed in draft free *“‘Styrofoam” enclosures.
The thermocouples were calibrated in a
specially constructed oil bath [12]. The oil
was vigorously circulated and measurements
(using the calibrating thermometers) of the
temperature distribution at the oil surface
showed that the point-to-point variations in

given temperature. Standard mercury-in-glass
thermometers accurate to 0-1°F were used as
the calibrating thermometers.

‘Dow Corning silicone fluids with a nominal
viscosity at 77°F of 0-65 and 2 ¢St were used as
the experimental fluids. The density and kine-
matic viscosity of these fluids were measured
at room temperature using, respectively, a
Cannon-Fenske (capillary) viscometer and a
Westphal balance. The variation of density
with temperature was calculated from the
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value of the coefficient of volume expansion
supplied by the manufacturer [7]. For the
2 cSt fluid, the temperature dependence of the
kinematic viscosity was obtained from the
Walther equation [31] and the manufacturer’s
data [7] on the viscosity—temperature coefficient.
It is not possible to use the Walther equation
with the 065 ¢St fluid. For this reason a quad-
ratic relation between kinematic viscosity and
temperature was used. When tested on the
2 cSt fluid this equation was found to agree
with the Walther equation to within 2 per cent
over the temperature range 100-210°F.

EXPERIMENTAL PROCEDURE

Prior to calibration the apparatus was
assembled as shown in Fig. 1. The probe was
Iowered to a point a few thousandths of an inch
above the lower plate. The ceramic legs of the
probe were adjusted to touch the plate. The
set-screws clamping the probe to the driving
screw were tightened. The thermocouple ten-
sioning screw was then adjusted until the probe
legs were just under tension.

At the end of each run an enlarged plot (€ vs. 2)
of the measured mean e.m.f was made. The
plotted distribution was extrapolated to pass
through the points =0 and & = Ae. The
point (z) at which the curve passed through
these points corresponds to z = O (lower plate)
and z = L (upper plate), respectively. In this
way the zero position of the thermocouple
probe was ascertained. The value of the plate
spacing (L) obtained in this way agreed within
0-001 in. with the measured length of the
quartz spacers.

The apparatus was filled with the experimental
fluid which was degassed by being kept at
165°F for 1 h. Care was taken to ensure that
all air bubbles were eliminated from the fluid
before measurements were made.

Before each run the electrical power input
was set to the chosen level and the system
allowed to come to thermal equilibrium, twenty
four hours usually sufficed for this.

The e.m.f. (¢) corresponding to the tempera-
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ture difference between various stations in the
fluid and the central thermocouple in the lower
plate was measured. The probe was held at
each station for about 10 min. The time mean
e.m.f (&) was determined by integration of the
probe thermocouple output (e). The integrator
formed part of the HR 8 lock-in amplifier
mentioned in the preceding section. This am-
plifier actually incorporates a number of inte-
grators each having a different time constant.
A time constant which suppressed the e.m.f.
fluctuations, as indicated on the amplifier
output meter, to within the desired accuracy
of measurement (20 pV ~ 0-1°F) was chosen.
The value of the time mean em.f. (&) was then
determined by means of the K3 potentiometer
(K in Fig. 2), using the HR 8 lock-in amplifier
as a null detector. For some of the runs (dis-
cussed in a following section) fluctuations with
a period of several minutes were observed. In
these circumstances the K3 potentiometer setting
was adjusted until approximately equal swings
of the needle on either side of the null detector
(HR8 amplifier) output meter zero were ob-
served. By using a long time constant on the
HRS8 amplifier, only the low frequency fluctua-
tions caused the output meter needle to oscillate.
The potentiometer setting was noted and this
procedure was repeated several times. The
time mean e.m.f. was obtained from the average
of the potentiometer settings.

When the time average of the probe em.f.
had been determined, the time constant of the
integrating circuit was set to a much lower
value (003 s, which is about ten times as
large as the estimated probe time constant).
With the potentiometer set to buck-out the
mean emf, as determined previously, the
output from the low noise amplifier was re-
corded on the strip chart and the magnetic
tape for further analysis.

At the beginning, at the end, and once during
each run the temperature of the upper and lower
surfaces of the test chamber were measured,
the power input, cooling water temperature
rise, and room temperature were also noted.
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The square of the root mean square value
(€2) of the e.m.f. fluctuations (¢') was determined
using the analog circuit shown in Fig. 3 [25].
Exponential weighting {9] was used under the

E. F. C. SOMERSCALES and I. W. GAZDA

The time mean temperature (T — Tj) and
the root mean square (T%) of the temperature
fluctuations were obtained from the probe
thermocouple calibration table.

- -[7-e]
TN > LN o
A
S é

F1G 3. Analog program for obtaining the exponentially mapped past estimate of the variance (« is exponen-
tial weighting constant [9, 257).

Table 3. Experimental conditions

Fluid o ing Temperature (°F) Prandtl  Rayleigh Heat — Nusselt
viscosityt i number number transfer number
sy~ Lind Ty T, T AT (Btu/h)

20 0-505 940 846 893 9.4 202 739 x 10° 661 902
20 0505 1195 1002 1099 193 168 176 x 105 1663 1t
20 1004 970 868 919 102 197 640 x 105 690 174
20 1004 1151 938 1045 213 176 147 x 107 1686 204
20 2013 1046 934 990 112 185 597 x 100 635 293
20 2013 1187 959 1073 238 171 130 x 10° 1706 385
065 1004 1106 936 1021 170 564 3T2x 107 1713 269
065 2013 1133 951 1042 182 556 321 x 108 1719 50-8

+ Nominal value at 77°F.

assumption that steady state conditions existed
before the measurements were made. In the
presence of long period fluctuations the measure-
ment period was made long emough for an
effective integration of all but the longest
period fluctuations. In these circumstances it
is possible that the long period fluctuations did
not contribute correctly to the computed values
of the root mean square temperature fluctua-
tions.t Where the long period fluctuations were
absent any small residual drift in the time mean
em.f was eliminated by the averaging circuit
shown in Fig. 3.

+ It is also true that exponential weighting does not

lead to a valid mean in the presence of long period fluctua-
tions (see further discussion below).

Eight sets of measurements were made and
the experimental conditions are summarized
in Table 3.

HEAT-TRANSFER MEASUREMENTS

The rate of heat transfer through the fluid
layer was determined from measurements of
the coolant flow rate and temperature rise, as
discussed earlier. Since the estimated heat
transfer through the Plexiglas side walls and
the quartz spacers was of the same order of
magnitude as the estimated heat losses to the
surroundings from the cold plate it was not
considered necessary to apply any correction
to the measured heat transfer. It was not found
possible to measure the heat transfer from
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the temperature gradient in the fluid at the
upper and lower boundaries because the di-
mensions of the conduction layer are so small
in the high Prandt] number liquids used in these
experiments, that it could not be detected by
the measurement techniques employed in the
investigation (this is discussed further in a
subsequent section). The heat-transfer measure-
ments were found to be in good agreement with
previous work [14, 24, 26]. The results are
summarized in Fig. 4. A relation of the form

Nu = 0-196 Rq® 283 “4)

appears to fit the data within +35 per cent.
This result gives values of the Nusselt number
which are about 10 per cent higher than the

Giobe and Dropkin

At Ll i b I

i1yl
10 108 107 108 10*
Ra

t [ EEET

FIG. 4. Heat transfer measurements compared with the data
of other investigators (O data of the experiments reported
here).

relation proposed by Rossby [24] for silicone
fluids with Prandt]l number 200, viz.,

Nu = (184 Rq0281%0°005, (5)

If the Nusselt number is assumed to depend
on the cube root of the Rayleigh number, the
following equation fits the data within about
+ 10 per cent

Nu = 0085 Ra%333, 6

Equation (6) is in good agreement with the
result proposed by Kraichnan [18] for fluids
with Prandtl number greater than 0-1, viz.,

Nu = 0-089 Ra® 333, M
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However, in view of the better fit to the data
provided by equation (4) it is concluded, at
least for Ra < 108, that the appropriate expo-
nent on the Rayleigh number in the heat-
transfer relation is less than the value of 0-333
used in equations (6) and (7).

MEAN TEMPERATURE DISTRIBUTION

The plots (Fig. 5) of the mean temperature
distribution have a “boundary layer” character
with an extensive core of constant temperature
fluid. There is a slight asymmetry in these
temperature profiles but it is not as pronounced
as in the cases reported by Somerscales and
Dropkin [27]. The cold boundary layer appears
to be a little thinner than the hot boundary
layer. In six of the eight runs the temperature
in the core fluid is slightly cooler than the mean
temperature of the fluid. This is contrary to
the observations of Thomas and Townsend
[28] and Rossby [24]. No asymmetry of any
kind was detected by Deardorff and Willis [6]
in their experiments. It is possible that long
period fluctuations (with an even longer period
than those mentioned before) are present in
the fluid. These could produce a very slight and
gradual change in the mean temperature of the
core during the time required to complete one
run.
From Fig. 5 it can be seen that a reversal of
the temperature gradient occurs at the edge of
the boundary layer for Rayleigh numbers
1-47 x 107 (both hot and cold boundary layers),
1-76 x 10° (hot boundary layer), 640 x 10°
(cold boundary layer) and 7-39 x 105 (hot
boundary layer). These (apart from Ra = 6-40
x 10°) are the Rayleigh numbers at which the
long period fluctuations appeared. It seems
reasonable to suppose that the two phenomena
are related. It was also observed that the long
period fluctuations did not have as large a
magnitude in the cold boundary layer as in the
hot boundary layer.

The amplitudes of the long period fluctuations
were approximately proportional to the tem-
perature difference (AT) between the upper and
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FIG. 5. Medn temperature distribution (some data points
omitted for clarity)
(a) L = 0-505 in.
(b) L = 1-004 in,

(c) L =2013in.
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lower plates and inversely proportional to the
spacing between the plates.

Rossby [24], using a silicone fluid of Prandtl
number 100, observed a slight reversal of the
temperaturé gradient in the hot boundary
layer at a Rayleigh number of 3-15 x 10°.
Rossby made no mention of long period fluctua-
tions and it is hard to judge from his records
of temperature against time whether they
were present or not. A temperature gradient
reversal in the cold boundary layer has been
reported by Thomas and Townsend {28] in
air (Pr = 0-7) at a Rayleigh number of 6-7 x 10°.
The records of the temperature fluctuations
against time obtained by Thomas and Townsend
indicate that long period fluctuations may have
been present. However they did not mention
their - existence. It was suggested that the
temperature gradient reversal is due to circula-
tory motions having dimensions similar to
those of the experimental apparatus. A logarith-
mic temperature distribution (which might be
a result of a shear boundary layer caused by
circulatory motions) was detected in both the
hot and cold boundary layers.

Rossby [24] l.xas made time lapse films of the
fluid motions (made visible by the addition of
a small quantity of aluminum dust to the liquid).
A large scale cellular structure appeared to be
present (also observed by Elder [11]) together
with a smaller scale “disordered” flow, even
at quite high Rayleigh numbers (10°). Flow
of this type has been mentioned by Liepmann
in a discussion of [21]. It might be very worth-
while to carry out a program of simultaneous
measurement of temperature and velocity to-
gether with observations of the flow pattern.

The dimensionless mean temperature was
plotted on logarithmic coordinates against
Kraichnan’s dimensionless distance (z/z,) for
all Rayleigh numbers (see Figs. 6 and 7). The
resulting correlation of the data is quite good.
Howard’s [17] predicted curve for the mean
temperature distribution is also plotted in
Fig 6 and it can be seen that the agreement
between theory and experiments is satisfactory.
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Figures 6 and 7 were examined with a view
to detecting regions in which the temperature
depended on z~! or z~% Lines representing
relations of this form have been drawn on the
figures. It will further be noted that these
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Fi1G. 6. Correlation of the mean temperature data for the

lower plate (some data points omitted for clarity). Note

32 (/Pr) =785 (Pr =6), 13-6 (Pr = 18). In this figure
distance measured from the lower plate.
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F1G. 7. Correlation of the mean temperature data for the
upper plate (some data points omitted for clarity). Note
32 (/Pr) = 785 (Pr = 6), 13:6 (Pr = 18). In this figure
distance measured from the upper plate.
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lines do not lie in the regions of the flow field
proposed by Kraichnan [18] and Malkus
[20, 21] (see Table 1). The gradient of the
estimated mean curve appears to progress
uniformly from zero to about — 3 as z increases.
It is concluded that a relation of the form of
equation (1) cannot predict the mean tempera-
ture distribution in high Prandt! number liquids
at the Rayleigh numbers encountered in these
experiments.

This conclusion is different from the results
of Somerscales and Dropkin [27]. However, it
is very important when examining data which
lie on a curve (as in Figs. 6 and 7) to avoid
correlating it with a straight line which is a
chord rather than a tangent to the curve. This

SOMERSCALES and I.

W. GAZDA
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F1G. 8. Mean temperature data (from Fig 6) compared with

mistake can be easily made if the ranges of the the data of other investigators.
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F1G. 9. Howard's [ 16] correlation of the mean temperature data for the lower plate (distance measured
from the lower plate). Some data points are omitted for clarity.

variables used in plotting the data are too
short and if a limited number of data points are
plotted. For these reasons the interpretation
of the data in [27] is of doubtful validity.t

It is interesting to note that there is an exten-

sive regiont for z/a, > 1 in which the tempera-
ture varies approximately as z~ . The measure-
ments of Deardorff and Willis [5, 6, 8] in air
have a similar characteristic except that the
ean temperature dependence is closer to

+ The values of z, employed in {27] appear to be higher
than those used in the work reported here The reason
for this is not known.

T Elder [11] erroneously stated that the slope of the curve
in this region was —4. The data of Elder is otherwise in
good agreement with the results reported here.
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Fic. 10. Howard's [ 16] correlation of the mean temperature data for the upper plate (distance measured
from the upper plate). Some data points are omitted for clarity.

2~ 1'% (see Fig. 13). This result may reflect the
use of spatial averaging by Deardorff and Willis,
which they contend is a more efficient pro-
cedure for obtaining valid average measure-
ments. Elder [10, 11], whose results are similar
to those reported here, used temporal averaging.

The data obtained in the experiments re-
ported here are compared with the results of
Rossby [24] and Elder [11] (see Fig. 8). The
plotted experimental points in [11] and [24]
were replotted and a mean curve drawn by eye
through the data.t

Figures 9 and 10 compare the data with
Howard’s 1963 theory [16]. The predicted
temperature has a much steeper slope than the
measured values. It can also be seen that the
difference between the theory and the measure-
ments decreases as the Rayleigh number de-
creases. This is in agreement with Howard’s
calculations which show that the difference

t It wouid have been interesting to plot the resuits of
Deardorfl and Willis [6] but the graphs in the original refer-
ence were found to be too small to aliow the extraction of
information of reasonable accuracy. For the data of [11] and
[24], z, was calculated from the Globe and Dropkin [14]
correlation and from the measured Nusselt number,
respectively.

between heat transfer measurements and the
calculated heat transfer decreases with Rayleigh
number.

HEAT-TRANSPORT PROCESSES

The heat-transport processes in the liquid
layer were examined by determining the gradient
of the mean temperatyre distribution at various
stations in the fluid. The gradient was numeric-
ally determined from a smoothed curve fitted
to the data, at each Rayleigh number, by
eye. The ratio (R) of the heat transported by
conduction to the total heat transport is
plotted against z/z, on loganthmic coordinates
in Figs. 11 and 12. The correlation of the data
is quite good, as might be expected from an
examination of Figs. 6 and 7.

A mean curve was drawn through the data
points by eye and an extrapolation of this
curve to values of z/z, less than O-1 passes
through R = 1 at about z/z, = 0-01. The maxi-
mum value of z, in the experiments was 0-038
in., so the maximum thickness of the conduction
layer is about 0-00038 in. A layer of such dimen-
sions could not be detected by the probe used
in these experiments.
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In view of this result it was possible to neglect
the dimensions of the conduction layer as
introduced by Chang into his theory. Then
Chang’s formula for the heat transfer becomes

Nu = 0-402 Rq?3?*? (8)
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Fig. 11. The ratio (R) of the conductive to the total heat
transport for the lower plate (distance measured from
the lower plate). Some data points omitted for clarity.
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FiG. 12 The ratio (R) of the conductive to the total heat
transport for the upper plate {distance measured from the
upper plate). Some data points are omitted for clarity.
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This result is substantially different from the
results [equations (4) and (6)] obtained in the
experiments reported here. It is concluded
that Chang’s wave model is not entirely satis-
factory.

The trend of the data for small values of
z/z, is such that the points associated with the
higher Rayleigh numbers do not approach
R =1 as rapidly as those for small Rayleigh
numbers. This suggests, as might be antici-
pated, that the conduction layer thickness
decreases as the Rayleigh number increases.

Earlier, it was pointed out that plotting the
gradient of the time mean temperature in the
fluid at various stations (z) allows measure-
ments made in confined layers to be compared
with measurements made above a single heated
plate. This has been done in Fig. 13. The data of
Deardorff and Willis [5] for air (Pr = 0-6) in

-0

e
T TT T

R
6:3x10% - | Deardort
1-0xl07 ~ 2} gegrdor
T-8x107 -3 | Willis (5]
Croft (2]
Townsand {29}
Somerscales ond  __ __
Garda

T

" 1 il i i i
GOl : : T &0

2/2 a

FI1G. 13. The data of Fig. 11 compared with the data of other
investigators.

a confined fluid layer was taken from the graphs
in [5]. In two cases their data attains the value
R = latsomedistance from thelower boundary.
The lower Prandtl number of air compared to
the silcone fluids used here results in a sub-
stantially thicker boundary layer which im-
proves the possibility of directly observing a
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conduction layer (in which R would be equal to
unity). In Fig. 13 it can be clearly seen that at
large z/z, the slopes of the curves are somewhat
lower than those obtained in the experiments
reported here. The results otherwise fall in the
same general region of the plot as those ob-
tained here.

O

-

‘3
} 0-01

0-00! i 1 [ N

Kraichnan

L
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and can be representedt by an equation like
equation (1) with n = 0-25 (023 < z/z, < 1:55)
and n = 050 (1'55 < z/z, < 6:0). The correla-
tion of the data using T/AT and z/z, was found
to be remarkably good. Figure 13 shows that
Croft’s results are quite different from the
other data which are plotted. Croft made his

[ A 1 Lot Ll

led 107

10® 1o*

Ra

FiG. 14. Kraichnan's [8] prediction of z, compared with the values obtained from the experiments
reported here. (O data of the experiments reported here).

The data obtained by Townsend [29] in air
over a single heated plate is also plotted in
Fig. 13. This tends to approach the condition
R = 1 much more slowly than the results of
Deardorff and Willis. Again the data appears
to occupy the same region of the plot as other
data. The data used in plotting this curve was
obtained from a mean curve drawn through
the points given by Howard (Fig. 4 in [16]).
The gradient was determined by numerical
differentiation and z/z, was calculated from
Howard'’s £ [16].

The gradient of the time mean temperature
measurements made by Croft [2] in air (Pr =
0-7) over a single heated plate is also plotted
in Fig. 13. Croft’s measurements show that the
temperature distribution is split into two regions

temperature measurements using an interfero-
meter whereas all the other data were obtained
from measurements made by probes inserted
in the fluid. It is possible that the results are a
consequence of the method of temperature
measurement.

Kraichnan [18] has assumed that the distance
(z,) from the lower surface at which half the
heat is transported by conduction is given by

CL
= INu ®)

Kraichnan arbitrarily chose the coefficient of
proportionality (C) to be unity. This result was

Zs

+ These results were obtained by replotting the data of
Croft (Fig 1 of [2]). z, was obtained by calculating the heat
flux from the dimensionless temperature 6, of [2].
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compared with the measurements reported
here. Mean curves were drawn by eye through
the plotted heat transport data for both the
hot and the cold boundary layers for each value
of the Rayleigh number. A single curve appeared
to fit the data from both the hot and cold
boundary layers. The value of zat which R = 0-5
was taken as the experimental value of z,. This
value for z, is plotted against the Rayleigh

E. F. C. SOMERSCALES and I. W. GAZDA

TEMPERATURE FLUCTUATIONS

The experimental data were compared with

the theories of Howard [17] and Chang [1] by

following exactly the same procedure adopted

by Rossby [24]. Equation (2) was cast into
dimensionless form

=&

™= 7 \Ra (10)

!O'O:‘
O
Ray 24000
..OE. o 0-65c5t Silicone fluid
C O 2 ¢&+ Silicone fiuid
-
r‘ -
Q10
. H 1 St ddn i d FRNE N N IR i bed g b d a4
R 107 el o?
Rg

F1G. 15. Characteristic period of the tempcx‘-:um]te fluctuations compared with Rossby’s
data [24].

number,t Fig. 14. Equation (9) is also plofted
in this figure using measured values of the
Rayleigh number (essentially, this is equivalent
to using equation (4) to obtain the Nusselt
number in terms of the Rayleigh number). The
agreement between equation (9) and the experi-
mental resuits is very good.

1 The Rayleigh number was used for the abscissa in Fig.

14 rather than the Nusselt number because it allows the
data to be plotted without resorting to an exaggerated scale.

where T* = 10%at*/[?. T* was estimated from
the record of temperature fluctuations by
counting the number of crossings of an approxi-
mate mean line in 60 s. This estimate was
made at the station where the oscillations
appeared to be a maximum. The results are
plotted in Fig. 15. The data fits a straight line
having the same slope (—064) as the lines
drawn by Rossby (Fig. 4.1 of [24]). This is
close to the value of —0-66 proposed by Howard
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(17]. Using equation (10) Ra; was estimated to
be 1400. It is not clear why this value is lower

than the values (2100, 4000} proposed by Rossby.
From equation (3) with Ra; = 1400 we obtain

Nu = 00893 Rq®333 (11

This is in quite good agreement with the heat-
transfer measurements made in this investiga-
tion [equation (6)].

Elder [10] has obtained a wall Rayleigh
number (Ra,) of about 400 for free convection
in a vertical slot filled with water.

The root mean square temperature fluctua-
tions are plotted against z/L in Figs. 16(a)-16(f).
The lines shown in these figures were sketched

Hot boundory layer

010 Ro

o008 A 7-39x10°
_ A 176 x10°
r ~a

. [
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in by eye to assist in ‘“‘organizing” the data.
As mentioned before, caution is advised in
interpreting the data from those runs (Ra =
1-47 x 107, 176 x 10° and 739 x 10°) where
long period fluctuations were present. The data
characteristically increases from very small
values, close to the horizontal boundaries,
passes through a maximum and then decreases.
The maximum is located at a distance of about
3z, from the horizontal boundaries.

The logarithm of the dimensionless r.m.s.
temperature fluctuations is plotted against the
logarithm of z/z, in Figs. 17 and 18. The data is
not particularly well correlated by the repre-
sentation used in these figures.
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Theoretical and experimental relations of
the form of equation (1) but applicable to r.m.s.
temperature fluctuations are summarized in
Table 2. The experimental results tend to have
a substantially lower constant of proportionality
(C) than predicted by theory. An average value
for the exponent (n) as obtained from the
measurements, shown in Figs. 17 and 18,
appears to be about 0-6. However exponents
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r o 6-40x10° x a
. a 3-72xi07
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x |-30x 108 x
+ 3-21x10°
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Fi1G. 17. Correlation of the r.m.s. temperature fluctuations
for the lower plate. Distance measured from the lower piate.
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FIG. 18. Correlation of the r.m.s. temperature fluctuations
for the upper plate. Distance measured from the upper plate.
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lying between 06 and 0-77 might well fit the
data. The value n =06 was, in fact, only
proposed in order to provide a broad compari-
son with the experiments of Townsend [29].
The fit is generally better in the hot boundary
layer. In the case Ra = 1-30 x 10® an exponent
n=1 could be employed. The constant of
proportionality was 0-105 for the hot boundary
layer and 0093 for the cold boundary layer,
with an average value of 0-099. It is not possible
to detect a trend in the value of the exponent
as the Rayleigh number increases (cf. Rossby

[24)).

ERROR CONSIDERATIONS

The measured values of T — Tj, are estimated
to have an uncertainty of 0-2°F, including
estimates of the sampling error. The correspond-
ing estimate for the temperature difference
(AT) is 0-1 deg F. It was difficult to assign an
uncertainty to the values of the dimensionless
r.m.s. temperature fluctuations (7"/AT) because
of the great difficulty in estimating the errors
associated with the determination of the r.m.s.
temperature fluctuations using the analog com-
puter. Taking this to be +10 per cent (con-
servatively high) it can be said that the dimen-
sionless r.m.s. temperature fluctuations are
accurate to within 0-01 at all points (z) in the
fluid.t

The height (z) and plate spacing (L) are
considered to be accurate to within +0-002 in.
and +0-001 in., respectively.

The hot and cold plate temperature uni-
formity was such that the average variation
amongst the plate thermocouples was +0-2°F
and +0-4°F, respectively. During the course of
one run (each of which lasted about 4 hr) the
temperature difference (AT) between the plates
did not vary by more than 0-2°F.

The uncertainty in the Nusselt number was

t This also attempts to take into account the effect of the
long period fluctuations.
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estimated to be + 7 per cent. The major contri-
bution to this uncertainty is associated with
the measurement of the heat flow through the
liquid and this uncertainty was about equally
divided ( + 2 per cent) between the measurement
of the flow rate and the measurement of its
temperature rise. The Rayleigh number is
considered to be accurate to +4 per cent.

The experiments were designed so that condi-
tions in the test chamber were free of effects
due to the geometry, particularly the aspect
ratio, that is, the ratio of horizontal to vertical
dimensions. According to the results obtained
by Deardorff and Willis [4] there is a possibility
that the data for Rayleigh numbers greater
than 597 x 107, where the aspect ratio was
small, was not free from these effects. Although
this data appears to have no trends which are
markedly different from those of the other data,
it must be recognized that the results reported
here may only apply for the particular aspect
ratio, at which the measurements were made.

Although Deardorff and Willis [4] recom-
mended spatial averaging as a more efficient
procedure than temporal averaging, the results
obtained in this experiment do not necessarily
support the conclusions of Deardorff and Willis.
Thus the maximum value of the dimensionless
r.m.s. temperature fluctuations (T'/AT) is 0-08
compared to the value of 0-11 obtained by
Deardorff and Willis [6] but this difference,
rather than being a consequence of the method
of averaging, may arise from the Prandtl
number of the experimental fluid. Observa-
tions in an earlier series of experiments [27]
suggest that for a given Rayleigh number the
flow is more disordered at lower Prandtl
numbers. Since Deardorff and Willis used air
with a nominal Prandtl number of (-7 in their
experiments it would follow that the flow in
their experimental system would be more
disordered than the flow at the same Rayleigh
number in the experiments reported here which
used liquids with Prandtl numbers ofabout 6 and
18. This is, of course, only conjecture and would
be a worthy topic for investigation.
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CONCLUSIONS
It was not found possible to represent the
time mean temperature data by an equation of
the form suggested by Kraichnan [18] and
Malkus [19], viz,,

T=Cz" v

Therefore, for high Prandtl number liquids in
the range of Rayleigh numbers covered by
these experiments (739 x 10°-3-21 x 108) it
is concluded that a power law representation
of the mean temperature is not applicable. This
differs from the results of an earlier series of
experiments [27]. However, the methods used
for the interpretation of the data in the investiga-
tion reported here are considered to be better
than those employed in [27].

The data did not fit the predictions of
Howard’s upper bound theory [16] but this
is not to be expected in view of the nature of
this theory.

The mean temperature measurements com-
pared satisfactorily with the results of measure-
ments made by Elder [11] and by Rossby [24].

The gradient of the time mean temperature
was compared with the results obtained in other
experiments [2, 5, 29]. Close to the lower
surface the behavior of the curves was quite
different but further from the boundary the
various data agreed more closely. This is
believed to be associated with the Prandtl
number of the experimental fluids. The results
obtained by Croft [2] were quite different from
other measurements. This is probably because
Crofts made his temperature measurements
with an interferometer whereas the other experi-
menters used thermocouple or resistance ther-
mometer probes.

The temperature fluctuations were found to
have a characteristic “frequency’” which varied
with the Rayleigh number in accordance with
the unsteady conduction theories of Chang [1]
and Howard [17]. However, the data did not
support Chang’s proposed wave model for the
fluid motion close to the heated boundary.

The characteristic frequency can be related
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to the heat transfer in the system. The Nusselt
number calculated, according to Howard’s
procedure {17], from the frequency measure-
ments was in quite good agreement with the
heat-transfer measurements made in this in-
vestigation. Chang’s theory, on the other hand,
was found to predict a much higher Nusseit
number than the measured values.

The r.m.s. temperature fluctuations could be
correlated within + 30 per cent of the following

formula
o z. -0-6
AT = 0-099 (Z) .

For a Rayleigh number of 130 x 10® an
exponent of — 1 seemed to be more appropriate ;
the same constant of proportionality was
applicable.

In the discussion of the data it was pointed
out that the measured values of the mean and
rm.s. of the temperature fluctuations for Ray-
leigh numbers greater than 597 x 107 may
have been affected by the comparatively small
ratio of horizontal to vertical distance in the
test chamber.

(12)
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CONVECTION THERMIQUE A DE GRANDS NOMBRES DE RAYLEIGH
DANS DES LIQUIDES A NOMBRE DE PRANDTL ELEVE

Résumé—La distribution de température dans une couche horizontale chauffée d’huiles de silicone a
nombre de Prandtl élevé (6 et 18) enfermée entre des plagues conductrices paralléles et regides a été étudiée
expérimen‘talemcm_ Les expériences couvraient une gamme de nombres de Rayleigh de 7,39 x 10° &
3,21 x 108

La moyenne temporelle de la température au voisinage des frontiéres supérieure et inférieure ne pourrait
pas étre représentée par une loi en puissance de la distance 4 I'une de ces frontiéres. Les fluctuations de
température ont une période caractéristique, comme 'avaient prévu Change et Howard. Les mesures du
transport de chaleur étaint en accord avec les mesures antéricures. La distribution de la moyenne quad-
ratique des fluctuations de température ne vérifiate aucune des théories proposées. La nature des procesus
de transport de chaleur dans le liquide a été aussi étudiée et les résultats ont été comparés avec d’autres

mesures experimentales faites par Townsend, Croft et Deardorff et Willis.

Zusammenfassung—FEs wurde die Temperaturverteilung in einer gelsten horizontalen Schicht fluider
Silicone hoher Prandtlzahl, die durch starre, paraliele, leitende Platten begrenzt war, experimentell
untersucht. Das Experiment bedeckte einen Bereich der Rayleighzahl von 7,39 x 10° bis 3,21 x 108,
Die Abhiingigkeit der liber die Zeit gemittelten Temperatur vom Ort nahe der oberen und unteren Grenze
konnte nicht durch ein Potenzgesetz wiedergegeben werden. Die Schwankungen der Temperatur hatten
eine charakteristische Periode, wie von Chang und Howard vorausgesagt worden war. Die Messungen des
Wirmeibergangs standen in Ubereinstimmung mit friiheren Messungen. Die Verteilung der mittleren
quadratischen Temperaturschwankungen verifizierte keine der vorgeschlagenen Theorien. Die Art
des Wiirmetransports in der Fliissigkeit wurde ebenfalls untersucht und die Ergebnisse mit Experimenten
von Townsend, Croft und Deardorff, und Willis verglichen.

AHBROTANUA—DKCIEPHMEHTAIbHO H3YYeHO pacnpefeieHUe TeMIepaTyPH B TOPH3OHTAJIBHOM
HArpeToM CJI0e KPeMHMIt-OPraHM4eCKHX RHIKOCTEN, BaAKIIOYEHHHX MERAY NapalileNbHHMH
¥ TIPOBOXAMMMHY NAACTHHAMK, NIpu Goabmmx yucaax [Ipanaraa (6 u 18). OnkTH npoBoxHAKCH
B aManasoHe uucen Peses or 7,39 x 105 mo 3,21 x 108, Cpennioo TemrepaTypy BO BpeMeHH
B6IM3N BepXHelt M HUKHeNl CTEHOK Hellb3A NMPEeACTaBMTb B BHAE CTETEHHON 3aBHCHMOCTH OT
paccronnua or Hux. Halfneno, 4To nyJbCcauuy TeMIEPATYPH MMEIOT XapaKTepHHH nepuon,
Kak ¥ Onto mpepckasano Uenrom u Tosapaom. Uamepenusa no TennooGmeHy HaXONATCH B
XOpOlueM COOTBeTCTBuH ¢ Gojtee paHHMMM paGoramnu. IlonyuyeHHOe B dKCnepUMEHTe CpelHe-
KBaPaTHYHOE pachpefielieHe TeMNePaTYPHHX NYJIbCAUMft He COOTBETCTBYeT HM OfHOM M3
Teopuit. Take UBYYAJCA MeXaHN3M NpoOLeECCa TENJONEPEHOCa B MUAKOCTU, a Pea3yabTaTH
CpaBHMBAINCH C SKCTIEPMMEHTATbHUMU JaunkMu Tayucenna, Hpodra, Tuopaopdga i Buase.



